Exercise 83

The motion of a spring that is subject to a frictional force or a damping force (such as a shock absorber in a car) is often modeled by the product of an exponential function and a sine or cosine function. Suppose the equation of motion of a point on such a spring is

$$
s(t)=2 e^{-1.5 t} \sin 2 \pi t
$$

where s is measured in centimeters and t in seconds. Find the velocity after t seconds and graph both the position and velocity functions for $0 \leq t \leq 2$.

Solution

The velocity is the derivative of the displacement function.

$$
\begin{aligned}
v(t) & =\frac{d s}{d t} \\
& =\frac{d}{d t}\left(2 e^{-1.5 t} \sin 2 \pi t\right) \\
& =2 \frac{d}{d t}\left(e^{-1.5 t} \sin 2 \pi t\right) \\
& =2\left\{\left[\frac{d}{d t}\left(e^{-1.5 t}\right)\right] \sin 2 \pi t+e^{-1.5 t}\left[\frac{d}{d t}(\sin 2 \pi t)\right]\right\} \\
& =2\left\{\left[\left(e^{-1.5 t}\right) \cdot \frac{d}{d t}(-1.5 t)\right] \sin 2 \pi t+e^{-1.5 t}\left[(\cos 2 \pi t) \cdot \frac{d}{d t}(2 \pi t)\right]\right\} \\
& =2\left\{\left[\left(e^{-1.5 t}\right) \cdot(-1.5)\right] \sin 2 \pi t+e^{-1.5 t}[(\cos 2 \pi t) \cdot(2 \pi)]\right\} \\
& =2 e^{-1.5 t}(-1.5 \sin 2 \pi t+2 \pi \cos 2 \pi t)
\end{aligned}
$$

Since s is in centimeters and t is in seconds, $d s / d t$ is in centimeters per second.

